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CHAPTER 1

INTRODUCTION

With increasing space activity, the use of light and flexible structures is becoming
important to reduce the high cost of lifting mass to orbit. The most important types of
structures used in space include large solar arrays and antennas, deployable satellites and
structures, precision optical systems, and space stations. Because of their flexibility, low and
closely-spaced resonant frequencies, and low damping coefficients, advanced structural and
control techniques are required to achieve the stringent pointing, displacement and shape
accuracy requirements for space structures. It has been found that passive control, combined
with active control, will be necessary for large flexible structures. The interrelationship among
the various disciplines affecting the analysis and design of large flexible structures is presented
in Figure 1.1. This diagram shows that the aspects of modeling of the structure, control system
design and location selection of control devices are very closely related and play central roles
in the flexible structural control problem. The problem of control system design of large
flexible structures can be broadly divided into two major parts - modeling and controller
design. Flexible structures are usually, by nature, distributed parameter (continuous) systems
whose dynamics can be modeled by partial differential equations. A popular method to
generate a finite-degree-of-freedom model for approximating a flexible structure, which has
infinite degrees of freedom, is the finite element method (FEM). Because of the large number
of degrees of freedom in the configuration space, the finite element models of large flexible
structures are of extremely high order, typically involving thousands of variables. It is
impractical to design a control system by using the full order finite element model. The model
reduction procedure is used to reduce the high order finite element model to a feasible lower
order model for controller design.

The model reduction procedures might introduce the observer and control spillover
problems which are caused by the unmodeled modes being measured and excited by the
controller. The instability caused in a simple beam because of spillover was demonstrated by
Balas (1978). Although much effort has been expended in control design or prefilter design to
filter out the signal from the unmodeled modes, the fundamental problem has not been totally
solved. Several approaches are proposed to eliminate the effect of spillover by Longman
(1979), Sesak and Likens (1979), Lin (1980), Meirovitch and Baruh (1981), Czajkowski and
Preumont (1987), and Preumont (1988).

As stated, the problem of controller design is a major issue in the control of flexible
structures. We can classify the controller design into two major types, namely, the passive
control and the active control. The passive control can be used to change the natural
frequencies and damping coefficients only by small amounts; also it might increase the stability
margin and the robustness of the system. The active control can modify the closed-loop
performance by changing the damping ratio and/or the stiffness to some extent. However, the




active control performance might be greatly degraded by the spillover effect of the residual
modes or the errors and uncertainties present in the system model. The general aspects of
structural control were discussed by Leipholz (1979) and Leipholz and Abdel-Rohman (1985).

To meet the stringent performance requirements of flexible space structures, several
challenging problems should be overcome. The first challenge is to generate an appropriate
reduced order model for representing an infinite dimensional distributed structural system.
This is a discrete input space-continuous output problem. The second challenge is to select the
number and locations of the sensors/actuators. This selection problem directly affects the
stability of the closed-loop system (Balas 1978) with the controller designed on the reduced
model. The third challenge deals with robust controller design which retains the closed-loop
stability and performance requirements under some amount of uncertainty in system
parameters or design variables.

In practice, the order of the finite element model involved in large flexible structures is
so high that it is impossible to solve a control design problem of the full order system. Hence,
the model reduction problem becomes very important. To describe the model reduction
problem, consider the dynamics problem involved:

x=Ax+Bu (L.1)

y=Cx (1.2)

where x,u, and y are the state, control, and the output vectors, respectively, A, B, and C are the
state, input, and the output matrices, and the dot indicates the time derivative. From this, a
reduced order model (A., B., C.) with reduced order state vector x. will be found so the error
criteria, established by the designer, will be minimized.

X; = A¢ X¢ + Bc u (1.3)

y=Ce X (1.4)

A graphical representation of the reduced order model is shown in Figure 1.2.

In general, the model reduction methods can be divided into two main categories as:
model reduction in frequency domain and model reduction in time domain. Several
comparative studies in model and controller reduction were made by Decoster and
Cauwenberghe (1976), Elrazaz and Sinha (1981), Hyland (1984), Sugimoto et al. (1985),
Hyland and Bernstein (1985), Parry and Venkayya (1986), Anderson and Liu (1987), and
Oliver (1987). Most of the existing approaches used in model reduction involve an
optimization problem which finds a set of parameters for the reduced order model so that a
stated error criterion is minimized. The model decomposition procedure is an alternative for
the modeling of large flexible structures. The substructures technique, which has been used in
the finite element method for solving large complex structural analysis problems, was extended




to the modeling of large flexible structures for control design by Young (1988) and Pan et al.
(1989). As described in Pan et al. (1989), the problems of model reduction and the spillover
problems are avoided by using the substructures technique.

Since 10 years ago, the literature related to the modeling and the control of flexible space
structures has been greatly increasing. Several survey papers on the subject have been
presented in the past by Canavin (1978), Blair (1978), Dahlgren and Gunter (1978), Gran and
Rossi (1979), Seltzer (1979,1980), Balas (1982), Garibotti (1984), Nurre et al. (1984), and
Santiago et al. (1984). The aspects of passive control, decentralized and hierarchical control,
integrated structural and control design, and number and/or location selection of
sensors/actuators are reviewed in the following sections.

1.1 Passive Control in Flexible Structures

The passive control methods for vibration suppression have been studied and used
extensively for a long time. The advantages of passive control are as follows:

1. It is simple and inherently stable.

2. No power-source is needed.

3. It can increase the stability margin of the overall system.
4

The passive damping augmentation might lead to reliable and robust systems with
simplified active controls requirements.

5. The proper design of the passive control system can reduce the settling time of the
transient response and the peak-overshoot.

Hughes (1980) and Zak (1988) investigated the effect of passive energy dissipation in
large space structure (LSS) control design. In the passive control, addition of damping
(damper) and stiffness (spring or tendon) is usually used. Passive damping can be added to
flexible structures through a variety of approaches including the addition of discrete viscous
dampers, tuned-mass dampers, impact/friction joints, and constrained layer materials. The
applications of tuned-mass dampers in high rise buildings to control the vibration of structures
by the single-input single-output concept were discussed by McNamara (1977), Wiesner
(1979), and Petersen (1980). Juang (1984) presented a technique for formulating expressions
of the optimal tuning law for an elastic system including a truss beam and a tip vibration
absorber. A formula relating the beam parameters to the size of the tip absorber is provided for
the optimal design of an absorber along with an evaluation of its performance for the single
mode case. Sesak et al. (1986) investigated the optimal tuning of multiple tuned-mass dampers
for the transient vibration damping of large space structures by using modern control theory
and parameter optimization techniques. Trudell et al. (1980) addressed the subject of passive
damping provided by the use of viscoelastic materials for large space structures. In the
PACOSS (Passive and Active Control of Space Structures) program, a representative system
(Representative System Article) was developed and analyzed by Morgenthaler and Gehling




(1986). The modal strain energy distribution approach was used to determine locations where
passive damping treatments would be most effective in a structure. Gehling (1986) also
presented the benefits of passive damping with regard to active control implementation and
retargeting performance of a large space structure.

Damping synthesis for flexible space structures has been studied by Soni and Agrawal
(1985), and Simonian (1986). Vegte and Hladun (1973) proposed an optimal passive beam
vibration control design by using optimal control techniques. Prucz (1987) suggested that the
passively damped joints using high damping viscoelastic materials, have the potential of being
effective practical means of passive vibration control.

A review of the damping mechanisms in advanced fiber-reinforced composites was given
by Adams (1986). Prucz and Fu (1988) presented the feasibility of controlling the propagation
of mechanical vibration associated with elastic stress waves in fiber-reinforced composites by
appropriate tailoring of material constituents and fiber orientations. Ashley (1984) presented a
study of the size effects on various damping mechanisms and thermal dissipation induced by
strain gradients during vibration of monolithic configurations. Chen and Wada (1988) studied
the application of viscoelastic damping materials employed in the parallel load path.

The stiffness modification in passive control is usually used to either maintain the shape
of a reflective surface (e.g. Herbert and Bachtell, 1986) or reduce the vibration amplitude by
increasing the stiffness. Many passive tendon control applications can be found in the
structures of tall buildings and long-span bridges to achieve higher strengths. Roorda (1975)
used the active tendon control in tall structures. An experimental tendon control system for a
flexible space structure was investigated by Murotsu, et al.(1988). Although the passive control
has some advantages, it is usually coupled with active control, to obtain what is known as a
semi-active or hybrid control, to achieve the stringent dynamic requirements of flexible
structures.

1.2 Decentralized and Hierarchical Control

The models of large scale mechanical and structural systems are usually well known but
often very complex. The system, sometimes, is viewed as a set of decoupled subsystems
(Siljak, 1979), and a local controller (decentralized control, Singh, 1981) is synthesized for
each subsystem neglecting the coupling among the subsystems in the first step. To satisfy a
specified global performance requirement, a global control (hierarchical control) may be
introduced. For most large dynamic systems (such as LFS), they usualg can be described as
collections of N interconnected subsystems (or substructures). For the i™ subsystem, let x; be
an n; dimensional state vector, u; be an m; dimensional control vector and z; be an r;
dimensional vector of interactions which come in from the other subsystems. The hierarchical
structure of a controlled structure is presented in Figure 1.3. The subsystem dynamics are
assumed to be linear and can be represented by the following state space equations:




X; (D) = A; x;(1) + Bju;(t) + ©;z; (1) (1.5)

xi(0) = xio (1.6)

It is assumed that the interaction vector z(t) is a linear combination of the states of the N
subsystems:

N

() = ¥ Lijxi(0) (1.7)
il
Jj#

It is desired to choose the control input uy, uj,..., uy such that the performance index J is
minimized. The performance index for a linear time-invariant system can be defined as:

te
J=§; 1/2 1x;(t)) 2Q + 1/2][ I xi(0) ZQ + (] Riz]dt (1.8)
lo

i=1

where x; and z; satisfy Eqs.(1.5)-(1.7), and |x| 2Q = x' Qx, and Q, and R; are positive
semidefinite and positive definite, respectively. Survey papers in decentralized/hierarchical
control are provided by Sandell et al.(1978), and Lindner and Riechard (1986).

A heuristic approach for the control of serially connected dynamical systems with and
without time delays between the subsystems was proposed by Singh and Coales (1975). The
control strategy is determined by minimizing the cost function, which is defined as the
summation of output error squares and input energy for each subsystem during the whole
control process. Singh (1975) presented a two-level algorithm which can achieve the optimum
decentralized control for large interconnected systems. A comparison of two hierarchical
optimization techniques was presented by Singh and Hassan (1976). Singh et al. (1976)
developed a decentralized computational procedure to find the optimal feedback gain matrices
of high-order linear quadratic problems. The interaction prediction principle is used for the
development of the closed-loop decentralized control. Siljak (1976) proposed a
decomposition-aggregation method using both the passive and the active stabilization devices
for a spinning flexible spacecraft stabilization problem. A decentralized optimal control for
stabilization of stabilizable large-scale systems was derived by Ikeda et al. (1983). The
optimal control in a decentralized scheme is achieved by selecting an appropriate performance
index. It is shown that optimality of the control is preserved for a modified performance index
under perturbations in interconnections so that the strength of coupling does not increase.
McClamroch (1985) presented a simple form of hierarchical control in the vibration
suppression of flexible structures including the dynamics of actuators. First, a decentralized
controller for the flexible structure is developed, and then a compensation is provided for the
member damper actuators to suppress the effects of actuator dynamics. The use of
decentralized control structures for LSS was investigated by Medanic et al. (1987). The




frequency weighting and the projective control techniques are used to ensure that the control
effect does not spillover into the unmodeled dynamics. Ozguner and Yurkovich (1987)
proposed an approach for decentralized frequency shaping for incorporation of frequency-
domain (bandwidth) constraints into the control design of a large flexible space structure with
the dynamic model including actuator dynamics.

The decentralized/hierarchical control procedure for LFS addressed by Janschek and
Surauer (1987), describes a multi-input multi-output design procedure based on a well known
sequential design approach. Local (low level) control loops for baseline stabilization and high
level control loops for overall performance are designed to satisfy individual criteria.
Bernstein (1987) investigated the sequential design of decentralized controllers by using an
optimal projection approach.

Ozguner and Yurkovich (1986) presented a control strategy involving a decentralized
model reference adaptive approach (DMRAC) using a variable structure control. Experiments
on NASA'’s flexible grid were performed by using DMRAC. The DMRAC method was also
investigated by Lee et al. (1988). It is shown that this method can achieve either output
regulation or output tracking with adequate convergence, provided the reference model inputs
and their time derivatives are integrable, bounded, and approach zero as time goes to infinity.

Vukobratovic and Stokic (1984) presented an iterative procedure for the suboptimal
synthesis of a robust decentralized control for a large-scale nonlinear mechanical system to a
set of nominal trajectories which are prescribed together with a region of allowable parameter
values. A decentralized control law for a class of nonlinear interconnected systems was
proposed by Saberi (1988). This optimal decentralized control law is derived by defining an
appropriate local performance index for each isolated subsystem and solving these local
optimal control problems.

West-Vukovich et al. (1984) presented the decentralized robust servomechanism
problem with constant disturbances/set points for LFS. It is shown that the spillover problem
can be eliminated. Lindner (1985), and Davison and Gesing (1987) considered the control of a
flexible spacecraft using a decentralized technique. The model order reduction in decentralized
control was discussed by Ozguner and Lee (1983), and Yousuff et al. (1986). The robustness
property of reduced order decentralized control designs was studied by Young and Siljak
(1985). Additional studies on the decentralized control of large scale systems can be found in
Aoki (1968), Singh and Hassan (1979), Siljak (1979), Singh (1981), Xinogalas et al. (1982),
and Davison (1984).

1.3 Integrated Structural and Control Design

In the conventional structural control arca, the structural design and the control design
are treated as two separate procedures. Although each design is optimal, based on the
individual criterion, the combined system might not be optimal in the global sense. Hence, a
great deal of research is currently in progress on developing methods for the simultaneous (or
integrated) design of the structure and the control systems. The current methodology applied




1o the integration of the optimal process for structures and controls is discussed by Wisshaar et
al. (1986). Cooper et al. (1986A,1986B) described IMAT (Integrated Multidiciplinary
Analysis Tool) for the integrated control/structure design.

The improvement of a control system’s properties, such as stability, controllability and
sensitivity, of a flexible structure by changing the structural parameters has been st:died by
Venkayya et al. (1985), Eastep et al. (1986), Haftka et al. (1984,1987), Khot et al. (1984,1986),
Flotow (1986), Schmit (1987) and Rao et al. (1989). The optimal design of flexible space
structures with constraints on dynamic properties (or response) were considered by Canfield et
al. (1986), and Woo (1987). Some optimization techniques used in structural multiobjective
design were discussed by Rao (1984,1986,1987). Yedavalli and Skelton (1983), and Yedavalli
(1984) presented the determination of the critical parameters of LFS with uncertainty by using
parameter sensitivity analysis methods. The sensitivity studies in controlled structural design
were presented by Gilbert (1986), Manning et al. (1986), and Adamian and Gibson (1987).

The weight of the structure was minimized with constraints on the distribution of the
eigenvalues and/or damping parameters of the closed-loop system by Khot et al. (1985). The
structure/control system optimization problem was formulated by Khot et al. (1987) with
constraints on the closed-loop eigenvalue distribution and the minimum Frobenious norm of
the control gains. A unified algorithm for sequential (or simultaneous) design modifications of
a closed-loop constant gain control system and the flexible structure to be controlled was
presented by Junkins et al. (1984). Hale (1985) considered an ellipsoidal set-theoretical
approach to the integrated structural/control synthesis for vibration regulation of flexible
structures. This approach attempts to maximize the allowable magnitude of an unknown (but
bounded) disturbance to the structure while explicitly satisfying specific input and output
constraints. Both structural parameters and control gains are variables during the optimization
process. A sequential quadratic programming technique was used to solve the optimal
structural/control design problem by Tseng and Arora (1988). They solved the boundary value
problem associated with the optimally controlled structure by first treating it as an initial value
problem and then solving it by using the iterative method of nonlinear quadratic programming.

Belvin and Park (1988) presented a method for the optimization of the closed-loop
structural system using only structural tailoring. The optimal linear quadratic regulator control
theory, in conjunction with modal-space control, is used with the weighting matrices chosen,
based on physical considerations. A disturbance model for the integrated structural and control
design problem was proposed by Slater (1988). This approach uses the response to dynamic
inputs and constraint limits to establish trade-offs between the control energy and the structural
mass. Lim and Junkins (1987) presented a design algorithm with numerical applications using
stability robustness measures. Three different cost functions, namely, the total mass , stability
robustness and the eigenvalue sensitivity, have been optimized with respect to a unified set of
design parameters which include structural and control parameters and actuator locations.

In the last few years, the simultaneous control/structural design problem has been treated
as a multiobjective optimization problem. It can be formulated as:




Min IZ.%) (1.9)
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subject to

X, <0

ﬂt - . “ . -
where f is vector of objectives, and g, X, and T are constraint, structural design, and control

input vectors, respectively.

Salama et al. (1984), and Miller and Shim (1986) considered the simultaneous
minimization , in structural jand control variables, of the sum of the structural weight and the
infinite horizon linear regula\tor quadratic control cost. A weighted-sum method for solving the
multiobjective optimization problem in the simultaneous structural and control design of
flexible structures was proposed by Hale et al. (1985). A weighted total mass consisting of
structural design parameters is added to the cost functional and the structural parameters are
varied to find the minimum total cost, and the mass and stiffness distributions of the structure
are determined as a part of the optimization problem. Onoda and Haftka (1987) presented a
similar optimization approach to solve the simultaneous design problem. It is proposed to
minimize the weighted structural mass and weighted input energy subject to the output norm
constraints by finding the optimal structural parameters, control gains and/or weighting
constants. A similar problem was also considered by Lust and Schmit (1988). Manning and
Schmit (1987) posed the integrated design problem as a composite objective function of total
weight and control energy subject to different constraints. The composite objective function is
modified to a single objective function, such as control energy (or total weight), with a
constraint that the total weight (or control energy) be less than or equal to the specified upper
bound, to get rid of the scaling problem.

Rao et al. (1988A,1988B) investigated the design of actively controlled structures using
two multiobjective optimization techniques: goal programming and game theory. The
simultaneous structural and control design, with a consideration of the robustness of the
controlled structure under uncertainty on parameters, was proposed by Rao et al. (1989). In
this paper, the stability and performance robustness indices are introduced. Several
multiobjective optimization techniques are used to solve the three-objective problem, the two
robustness indices and the total structural weight, to get a more robust controlled structure
under certain physical constraints. However, some objective functions may not be unimodal
and local optima will be obtained by conventional optimization techniques. Hence
revolutionary optimization techniques need to be developed for their solution.




1.4 Sensor and Actuator Location Selection Problem

The determination of the number and location of sensors and actuators for distributed
flexible structures is an important issue. If the sensors are used not only for the feedback
control gain calculation, but also for monitoring the change of system parameters or estimation,
the selection of the number and location of the sensor/actuator becomes more critical.
Generally speaking, this problem can be solved using optimization techniques or cost
decomposition methods. Using optimization methods, the problem can be formulated as:

Milf(n,m,?,y’) (1.10)

n.m,Xx,y

subject to the specified constraints, where f is the cost function which is usually defined as the
summation of the output error covariance, input energy and the cost (weight, budget) of sensors
and actuators. The variables n and m denote the number of sensors and actuators, respectively.
The vectors X and y represent the location vectors of sensors and actuators, respectively.

A survey of the field of optimal sensors and/or actuators location for dynamical
distributed parameter systems modeled by partial differential equations was presented by
Kubrusly and Malebranche (1985). Omatw et al. (1978) solved the optimal sensor location
problem for a linear distributed parameter system by using a criterion to minimize the trace of
the optimal filtering error covariance function. Schulz and Heimbold (1983) presented an
optimization method to determine the locations of sensors, actuators and feedback gains for the
control of flexible structures. Heuristic integer programming was used to select the actuator
locations in large space structures by Haftka et al. (1985). Salama et al. (1987) cast the
location selection problem as a combinatorial optimization problem and solved it by an
adaptation of the simulated annealing heuristic algorithm.

Stieber (1988) investigated the interrelation between the arrangement of sensors and
actuators on flexible structures and the hyperstability, which is a system property that
guarantees the stability of interconnected systems. Velde and Caignan (1984) considered the
number and placement of control system components including possible component failures. It
is solved by computing the performance of all admissible combinations of component
locations. The placement of sensors in structural control and the associated reliability of the
system was analyzed by Baruh and Choe (1988). An optimization technique is used to
determine the best locations of the operational sensors. In addition, it is shown that modal
filtering by means of spline functions is more desirable for modal coordinate extraction than
the other approaches because of stability and robustness considerations. Montgomery and
Velde (1985) presented the sensor/actuator location problem with reliability considerations.
The optimum placement of sensors and actuators for static deformations and shape control of
LSS was investigated by Haftka (1984), and Haftka and Adelman (1987). The actuator/sensor
failure detection methods in the control of flexible structures were studied by Baruh (1986),




and Baruh and Choe (1987).

The component cost analysis or input/output cost analysis was developed by Chiu and
Skelton (1981) to solve the optimal number and location selection problem in LQG systems.
The component cost at each possible location is found and ranked in order. The possible
locations having least contribution to the cost function are truncated and the remaining
locations are considered to be the best places to locate the sensors/actuators. Additional studies
can be found in Chiu and Pan (1983), and Skelton and Delorenzo (1983). Lindberg and
Longman (1984) developed a method to determine the optimal actuator locations for
independent modal space control. A projection approach was developed and a sensor location
criterion, which minimizes the error caused by the unobservable subspace under nonstationary
noise, was derived by Morari and O’Dowd (1980). Other related research was conducted by
Jai (1986) and Lafontaine and Stieber (1986). Although many approaches were studied, there
is no guarantee to obtain a global optimal solution for the sensor/actuator location selection
problem of LFS.

1.5 Outline of the Report

After an overview of the recent research in modeling and control design for flexible
structures, the report is organized as follows. Chapter 2 introduces the interacting substructure
decentralized control design approach. The idea of the interacting substructure decentralized
control originated from the substructure techniques used in structural analysis for large
complex structural systems. The interacting force balance plays the key role in the individual
control gain design for each substructure. The control gains are made to converge after several
iterations of the procedure. This method does not need model reduction and hence the spillover
problem is avoided. A passive control design and a dual passive/active control design are
introduced in Chapter 3. In Chapter 4, the stability and performance robustness indices are
defined, and the integrated structural/control design problem is considered as a multiobjective
optimization problem. The optimal actuator/sensor location selection problem is addressed in
Chapter 5 and three methods are considered to solve the problem. Finally, Chapter 6 offers
some concluding remarks on this research.

10




System
Identification

?

LFS
System

Testing

Perforﬁ'nance
Evaluation

Structural
System

Modeling

Control
System

?Control
System
Design

| Sensor/Actuator
' Location
Arrangement

Figure 1.1  Relationship Between Techniques of Large Flexible Structures

11




Figure 1.2

Actuator
Dynamics

Control law based
on
reduced order model

—

Reduced Order Model

e e {1 e
A
J
+
i xn:'g_x'; ul
Residual Dynamics

| Sensor
{Dynamic

Model Reduction and Control of Large Flexible Structures

12




Global

> Controller
or

Coordinator

Local fL Local Local
Controlle ontroller|...... Controlle
1 2 N

................................................................................................................................................

Substructure
N

Substructure | | Substructure

...........................

Figure 1.3  Hierarchical/Decentralized Control of Large Flexible Structures

13




CHAPTER 2

INTERACTING SUBSTRUCTURE DECENTRALIZED CONTROL

2.1 General Formulation of Flexible Structures
For flexible structures, the equations of motion can be expressed as

MV +Cv+Kv=Du 2.0

where M,C.K, and D are the mass, damping, stiffness, and the input matrices, v and u are the
displacement and the input vectors. [.etting xT = {vI v}, Eq.(2.1) can be rewritten as

x=Ax + Bu 2.2)
where
A= 0 : (2.3
T [-MIK -MIC )
B=| O 2.4)
T IMT'D '

Without loss of generality, the optimal linear quadratic regulator method is applied to design
the control gain of the feedback controller for simplicity. Thus, the input vector can be
presented as

u=-R'BTPx (2.5)

with P satisfying the following matrix Riccati equation

ATP+PA-PBR!BTP+Q=0 (2.6)

where Q is a positive semidefinite output weighting matrix, and R is a positive definite input
weighting matrix.

2.2 Nodal Condensation for Substructures
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2.2.1 Direct Condensation

When the number of degrees of freedom in a structure becomes very large, the analysis gets
difficult and sometimes becomes impossible. To solve this kind of large structures, one cian
divide the analytical model into substructures and solve the smaller problems individually.
The equation of motion for a specific substructure can be written in terms of the internal and
the boundary degrees of freedom as

Maa Mnb 36;\ Caa Cab ka Kaa Kab Xa fa
+ + = .7
Mpa Moo | {%, | [Cba Cob{xy| [Kba Kev||*]| |fb

where x is the displacement vector, M, C, and K are the mass, damping, and the stiffness
matrices, and f is the force vector. The vectors and the matrices in Eq. (2.7) are partitioned
corresponding to the boundary degrees of freedom (subscript b) and the internal degrees of
frcedom (subscript a). Let the force term on the right hand side of equation (2.7) be equal to

Zf &' 5o that the system response can be expressed as Zv &/ For each force component
i=1 =1

there is a corresponding response, thus the superposition approach can be applied. The original
problem then can be divided into k equations of motion corresponding to any specified input
frequency. Considering, for simplicity, only one force component f=fe/®*, Eq.(2.7) can be
expressed as

Kaa+Caaw_Maaw2 Kab+Cabw—Mabm2 Va —a (2 8)
Kba‘i‘cbaﬂ)—Mba(Dz Kbb+Cbbw_Mbbm2 Vb N ?b .
Assume that no force is applied on internal nodes (i.e., f, =0) so that
Daavy + Dypvp =0 2.9)
where
Dya = Kag + Cpa0 — My, 02 (2.10)
D,y = Kap + Capy — Mp00? @.11)

The exact transformation from the degrees of freedom at internal nodes to those of boundary
nodes can be obtained by solving Eq.(2.9).
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~1

Va==D7" 3aDapVp (2.12)

Let ® be the fixed interface modal matrix and Q2 be a diagonal matrix consisting of the natural
frequencies corresponding to the modal matrix. The following relations between modal data
and mass, damping, and stiffness matrices are satisfied.

®TM,, ® = Identity Matrix (2.13)
DOTK,, & = Q? (2.14)
&TC,, d=2¥ (2.15)

where ¥ is damping coefficient matrix. The damping is assumed to be proportional damping so
that \¥ is diagonal. Substituting these relations into Eq.(2.10) yields

D}, = »(Q? + 2¥0 - lw?) ' ®T (2.16)

In Eq.(2.16), the term in parenthesis is in diagonal form by assuming that all eigenvalues are
distinct and hence the inverse of it is the inverse of each diagonal term. For example, the i'®
term can be expressed as

(@ +2¥0-w?) ' =

1 L K R
Q4| of
3 2
1 J ) »1| 8% 1 4 s
+ ——{(Q° +2¥0 -1 - (O [( 2.17
o | a5 |of e @17
J

Substituting Eq.(2.17) into Eq.(2.16), the inverse of transfer matrix D,;, can be obtained as
follows.
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Da =Kj, [l -CuKno+ [MuK;; +(CaaKza )2] wz}
+ & diag [residual part]®’ @’ (2.18)

where the residual part is contained in the last term of Eq.(2.17). Thus the transformation
matrix can be written as

Va

Vb

This transformation is a function of the frequency of excitation. The frequency content of
excitation is usually unknown in advance. If the frequency content of excitation is small
compared to the system natural frequencies, the frequency dependent terms in the transfer
matrix of Eq.(2.19) will be less important and a simplified transformation can be obtained as
follows.

(2.19)

-Dl Davab
I

D! =Kz! (2.20)
Dy =Kap (2.21)
Va
Vb -

As a more general case, a serial structure is considered with the equation of motion of each
substructure in a tridiagonal form as

2.22)

"K;x} Kab]
R

Mg,s, Mg, 0 VB, Cg,B, Cg,aA, 0 VB,

O MBblAk MBblel 0 CBk»lAk CBhlBkol

ka‘ 1 VBHOI
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Kg,B, Ks,A, 0 VB, Fg,
+ |KaB, Kaa, Kas, ||va, |=|Fa (2.23)
0 KBkolAk KBkolBkﬂ kabl FBbl

in which the subscript Ay denotes the internal degrees of freedom of substructure k, and By and
By:+1 denote the boundary degrees of freedom between substructure k and connected
substructures k-1 and k+1, respectively. For a single frequency excitation, Eq.(2.23) can be
rewritten as

Dg,s, Da,a, 0 Vg, fg,
Da,, Daa, Dags,, ||va, |=|fa (2.24)

0 DBmAk DBIM Bui | |YBua me

The internal degrees of freedom can be reduced to boundary degrees of freedom by assuming
fa, equal (o zero:

VA, = -D! AA, (DAkBk vp, DAkBm VB ) (2.25)

Thus the transformation can be obtained as

ng v IBk O v .
va, |=Te| ™ | = |-D'anDag, ~D'anD B
A | =Tk = AADaB, AADAB,., (2.26)
\ v
Bkbl Bkol
vBhl 0 IBk,l
where
- 2
Daa, =Kaa, +CAA,0—-Mjya 0
Da,p, = Ka,B, + Ca,p, @ — Ma p, 0’ (2.27)

_ _ 2
DAkal = KAth + CAkBkolm MA\:Bmm

The transformation matrix can be reduced to a simple form if the frequency content of
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excitation is small compared to the system natural frequencies. Thus

Ip, 0
Te= |-K'aa Kagp, ~K'aa Kas,., (2.28)
0 IBkol

2.2.2 Indirect Condensation

An alternative condensation approach, using modal data of each substructure, is developed
in this section. The full order modal matrix (®) need to be found in this approach and the
modal coordinates are denoted by the vector y. The displacement v can then be represented as

v ==y (2.29)
and the inverse of ® exists, so that
y= oy (2.30)

Suppose that the modal coordinate vector y is arranged in two parts which are truncated modes
(y¢) and retaining modes (y,). The physical coordinates (v) are also arranged in two parts
which are internal degrees of freedom (v,) and boundary degrees of freedom (vy). Then
Eq.(2.30) can be rewritten in the following form

Y - ?&a ?tb Va 231)
Yr q’u (Drb Vb

o l= 5 & (2.32)
ra b

where

In Eq.(2.31), the number of truncated modes will be chosen same as the number of internal
degrees of freedom. To eliminate the truncated modes, vector y, is set to be zero and hence

bV, + Dy vp =0 (2.33)

The relation between v, and v, then can be obtained as
—1

va=~D |, Dyvy (2.34)

and
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a T‘ .
{v }:[ b]vb (2.35)
Vp 1

—] =
Tapb =P Dy (2.36)

where

2.3 Interacting Substructure Decentralized Control for Serial LFS

For a large-scale interconnected system composed of a number of subsystems or for a
system distributed widely in space, the scheme of decentralized control has advantages in
computation and implementation of control laws (Siljak, 1976, SandellJr. et al., 1978, and
Singh, 1981). When decentralized optimal control is used, the resulting closed-loop system is
guaranteed to have robust stability properties against variations in the open-loop dynamics
(Tkeda et al., 1983). Hence the stabilization of large-scale systems by means of local state
feedback has been applied extensively.

In this section, a new decentralized control approach for serial LFS is developed by using
interacting substructure technique. The optimal linear quadratic regulator method is used for
the controller design. Let the complete flexible structure be divided into ng substructures as
indicated in Fig. 2.1 and the equations of motion of the k' substructure be given by Eq.(2.7)
which can be rewritten in state form as in Eq.(2.2). The controller design starts from the first
substructure which contains nodes belonging to the global boundary as well as the local
boundary between substructures. Without loss of generality, optimal LQR method is used in
control design for simplicity. In the first iteration, the controller is designed by assuming the
local boundary to be free. The siate equation and the control law can be written as follows:

).(1 =A1x; + By (2.37)

The optimal state feedback gain is given by

u; =-G;x; =-R7'BTP;x, (2.38)

where P; satisfies the matrix Riccati equation

ATP, +P,A, - P;B4R7'BTP, +Q; =0 (2.39)

The state vector x; can be divided into interior (x;4) and boundary (x,g) states so that,

. T .T.T .TT
Xy = (XA, XB, XA, XB,) =Ai1x; +Bjuy
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0
=Aix+ | = 2.40
1X {—B\Ga]xl (2.40)

where B, is lower half part of matrix B;. The control force can be obtained by multiplying
-B,G; by M, and expressing in the following form:

fa _
l =—M1B101X1 (241)
fa

1

where f5, and fg, are equivalent forces applied on internal and boundary degrees of freedom.
Applying the transformation in Eq.(2.22) gives

Tag, - O
fa, _ I o ||%B
=-M;B;G ) (2.42)
fg, S I TaB, Xp,
0 I
where
TA]B] = —K-l A] A] KA]Bl (2‘43)
The equivalent forces applied on boundary degrees of freedom can be expressed as Fg
fa, _
Fg = [O IB, ] £ = lel X, + fZBl X, (2.44)

where Ig, is the identity matrix with the same dimension of xg, .

The intermediate substructure k (k#1 and n;) will have boundaries connected to the
(k=1)"and the (k+1)™ substructures. Let the corresponding boundary states be represented as
xp, and xg,,, and the boundary force contributions be denoted as Fp, and Fg,, , respectively.

The equations of motion of the k™ substructure are given by

. .T.t .T .T.T . T 1T
Xk = |XB, XA, XB,,, XB, XA, XB,,
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0 0
= ArXy + Bpup + _ + - 2.45
kXk + Byug [Mk'FB.] [MleB...] (2.45)

In the first iteration, Fg , (k=1 to n,-1) is assumed to be a zero matrix so that the boundary
forces can be explicitly expressed as

fig, xB, + f28,XB,

Fg, = 0 (2.46)
0
and
0
Fp,, = 0 (2.47)

lehl bil + fZBhl thl

Substituting Eqgs.(2.46) and (2.47) into Eq.(2.45) gives

’.(k = (A + FB, + FBN) Xk + Bkuk

= Apxi + Biuk (2.48)
where
_ 0
Fa, x¢ = [MQ‘FB ] (2.49)
1
_ 0
Fg,, xx = {MElFBk , ] (2.50)

The optimal linear quadratic regulator method is applied to solve the constant optimal feedback
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gain for substructure k:

ug = —Gyxe = =Ry B Py x 2.51)

where Py satisfies the Riccati equation

—T -
APy + PLAy — PkBkRE] BIPk +Qx=0 (2.52)

Similarly, the forces applied on the boundary which are contributed by the actuators involved
in the substructure k can be formed as

By =
kUk _B,Gy

0
—_ } X (253)

where By is the lower half part of matrix B,. Multiplying -B, Gy by the mass matrix gives the
control force vector:

FBk thl
FAk = —MkﬁkaXk = —MkﬁkaTk ’.(B (254)
FBhI . '

thl

\ 7

where 'fk can be obtained from Eq.(2.28) for direct condensation or Egs.(2.35) and (2.36) for

indirect condensation as:
o | 2.55
KT1o T, (2.35)

The forces acting on the boundary degrees of freedom are given by Fg, and Fp,, in Eq.(2.54).
In order to include boundary forces into the equations of motion of connected substructures, the
equivalent boundary forces should be transformed to be functions which depend on its own
boundary degrees of freedom. From direct condensation Eq.(2.24), the first and the third
equations give
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Dg,s, vB, + Dp,a, VA, =FB, (2.56)

Dg,.,A, VA, +Dg,,.B,,, VB, = Fa,, (2.57)

Substituting v, from Eq.(2.25) gives

(DB“B“ + DB"AkTAkBk) ka + DBkAkTAkBkukaq = FBk (258)
DBhlAkTAkBk ka + (DBhlBhl + DB;.]A; TAkal ) VBbl = FBbl (2.59)

where
Ta.8, =-D a4, DaB, (2.60)

Assuming Fg,_or Fg  to be zero gives the relationship between the displacement vectors vg,
and vg, :

ve, =—(Dp,B, +Dg,a,Ta8, y! Dg,a, TAkBku v8,., =TB,B,, VB, (2.61)

- -1 —_
VBun = -(DBhlel + DBhlAk TAkBm) DBhIAl TAka VB, = TBM B, VB, (2‘62)

The transfer matrices in Eqs.(2.61) and (2.62) can be reduced to the corresponding stiffness
matrices if excitation contains only low (compared to the system natural frequency) frequency
components (i.e., D is substituted by K in Eqgs.(2.61) and (2.62)). Thus the equivalent
boundary forces can be rewritten as

- — XB,
Fp, =- ['B. 0 0] MyByGi Tk Ty 1.k | . (2.63)
ka
— — xBlbl
Fg,, =- [0 0lg,, ]Mk By Gy Ty Ty, k41 ‘ (2.64)
Bhl
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where

(5, 0 ]
- TBkolBk 0
Ter k= 0 Iy (2.65)
+'
0 Tg,,B
and
TBkBkd O
T B 0 2.66
Kk+l = 0 Tan. (2.66)
L 0 I,

Equations (2.63) and (2.64) give two equivalent forces which are contributed by the actuators
of substructure k and act on the boundary nodes of substructures (k-1) and (k+1), respectively.
The transformation matrix for indirect condensation approach is much simpler. For the
interacting force on boundary By,;, only the degrees of freedom belonging to By, are
considered as boundary d.o.f.’s. Hence, the transformation matrix in Eqs.(2.35) and (2.36) are
valid after proper assignment of interior and boundary degrees of freedom. The controller of
each substructure can be designed one after the other sequentially. In the first iteration, the
acting force contributed by the connected substructures is on one side only (except the first
substructure). In the consecutive iterations, all substructures, except the first and the last, are
subject to interacting forces on both sides. The control gain of each substructure converges
iteratively. Proper summation then can be used to obtain the global control gain corresponding
to the complete system state x; which is the union of x;,x2,...,Xy, .

2.4 ISDC for Substructures Containing No Actuators

The basic idea of ISDC discussed in the last section is the interacting force balancing. If
there is any substructure containing no actuator, the interacting force to the connected
substructures is assumed to be zero which can not balance with those forces from connected
substructures. Hence the procedure described in the last section is not valid any more. To
generalize the ISDC procedure, interface stiffness and inertia loading, used in the dynamic
analysis of large complex structures, is used to connect the substructures containing no
actuators. For example, two connected substructures 1 and 2 have the same boundary (i.e.,
vg,=vg,) and the equation of motion (EOM) of substructure 2 is influenced by substructure 1.
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Thus, the modified EOM of substructure 2 can be written as:

MAzAz MAsz VAI CA;AZ CAZ B2 QAZ
— + _
Mg,a, Mg,B,+Ms, .‘;B, Cs,a, Ch,B,+C, VB,
Kaa,  Kags, Va, fa,
— = (2.67)
Kgn,a, Kp,p,+Kp, | |VB: fa,
where
Mg, =TT oM Ty, (2.68)
Cp, =TT 12C1 Ti2 (2.69)
Kp, =TT 12K Ty2 (2.70)

and the transformation matrix T, can be obtained from Eq.(2.22) as follows:

~(Ka a ) 'K
Tz = { ( A'A‘: A‘B‘} @.71)

where M;, Cy, and K are the mass, damping and the stiffness matrices of substructure 1.

For a serial structure, a more general form can be derived for substructure k:

—k—-1 .
MBxBn +M B, MB,‘ A, 0 VB,
MAka MAkAk MAkBm VA.
—k+1 .
0 MBblAl MBm Bya +M Bea | |VB.,
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—k-1

CB. Bl +C Bk CB* Ak 0 ka
+ Ca,B, Caa, Ca,B.., Va,
=k+1 .
0 CBkolAk CBk.me+C B | |VB,.,
—k-1
KB[BK-‘-K Bk KBkAk 0 ka FBk
+ Ka,B, Kaa, Ka.B,., va, | = | Fa, 2.72)
—k+1
0 KBmAk KBhIBkol +K Byt VBy.. FB“"
where
—k-1
M g =T ) My Teork (2.73)
~k+1
Byn =TTk+l.k+1Mk+lTk+l.k+1 (2.74)
—k-1 T
C B, =T k-1.kCr-1Ti-1.x (2.75)
—k+1 T
Bey =T ka.kt1 Gl Tha ka1 (2.76)
—k-1 T
K B, =T k1,kKk-1Ti-1,k (277
—k+1 T
Bey =T kelkst Kitt Tat kel (2.78)

Transformation matrices Ty_; i and Ty, k41 can be derived from Eqs.(2.28), (2.61), and (2.62)
and expressed as
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I
-1
Tk-l.k — -(KAk—lAk-l) KAk IBk

-1 -1 -1 '
(KBk—lBk—l —KBk—lAk-l K A 1A KAHBH ) KBHAH K AiAugy KAk 1By
2.79)

-1 ~1 -1
(KBkblel—KBhlAbl K AkolAhl KAhl BhZ) KBhZAbl K Akbl Ahl KAbl Bknl
- -1
Tirt et -K AvaAx Ka..B..,

|
(2.80)

Thus the substnictures which contain no actuators can be condensed to the connected
substructures using the equivalent stiffness and inertial loading. The interacting force used in
ISDC approach can then be transmitted through the substructure containing no actuator to the
other substructures. For example, let the k™ substructure be the only substructure containing no
actuator. Then the modified ISDC procedure can be summarized as follows.

1. Use the ISDC procedure of section 2.3.

2. Modify the equation of motion of substructure (k-1) by adding the equivalent dynamic
loading, which includes the interface stiffness, inertial loading and interacting force from
substructure (k+1), of substructure k and interacting force from substructure (k-2).

3. Design the controller using the modified EOM of substructure (k-1).

4. Similarly, modify the equation of motion of substructure (k+1) by adding the equivalent
dynamic loading of substructure k and interacting force from substructure (k+2).

5. Use the ISDC procedure of section 2.3.
The simple flowchart for the general ISDC procedure is presented in Figure 2.2.

2.5 ISDC for General Structures

For more general structures, any substructure might connect with more than two
substructures. The direct condensation process will lead to a difficulty in formulation of the
tranformation matrix. The indirect condensation process can express the transformation matrix
as in sec. (2.2.2) in which interior degrees of freedom include the original interior d.o.f.’s and
all other boundary d.o.f.’s which are not needed in the final expression. For example, a
substructure k, which connects m substructures, contains the original interior degrees of
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freedom (v,) and the boundary degrees of freedom (v}, ) which connect substructures k and i
(i=k1,k2,k3,....km). If the transformation matrix between vp,, and all other d.of.’s is going to
be found then the interior d.o.f.’s in Eq.(2.35) consist of v, and vp, (j=k2,k3,....km), and the
boundary d.o.f.’s consist of vy;. Similarly, the transformation matrix between each set of
boundary d.o.f.’s and the other d.o.f.’s can be found. Hence, the indirect condensation process
makes the transformation very simple and can be used in any general structure.

2.6 Examples

Two examples, involving a two-bay truss and a six-bay truss, are considered to illustrate
the procedure of interacting substructure decentralized control outlined in this chapter. For the
two-bay truss (Fig. 2.3), two substructures are used and four sensors and actuators are
colocated at degrees of freedom 1,2,5, and 6. The weighting matrices Q and R are selected as
103*1 and I, respectively, where I is the identity matrix. Following the procedure described in
sec. 2.3, the closed-loop eigenvalues obtained are shown in Fig.2.4 which are compared with
those of the controlled structure designed using the complete system model. Most of the
closed-loop eigenvalues are close for these two systems. Furthermore, the first three modes for
the system with ISDC design have better damping property than the system with LQR
controller. The simulation results for the dynamic responses of degrees of freedom 1,2,5, and 6
under a unit impulse at degrees of freedom 1 and 2 is shown in Figs.2.5 to 2.8. These results
indicate that the interacting substructure decentralized control algorithm leads to a better
dynamic response. It doesn’t mean that the ISDC approach is better than the LQR design
because the performance index might not be better for the system with the ISDC design.

For the six-bay truss (Fig.2.9), three substructures are used and six sensors and actuators
are colocated at degrees of freedom 1,2,5,6,17, and 18. The weighting matrices Q and R are
chosen as 10°*I and I, respectively. The global controller is designed using Eqs.(2.37)-(2.66).
The closed-loop eigenvalues are plotted in Fig.2.10 and compared with those of the LQR
controller designed using the complete system model. The ISDC design gives a more
conservative result than the LQR controller with complete system model for lower frequency
modes. Figures 2.11 to 2.16 show the simulation results of degrees of freedom 1,2,5,6,17, and
18 under a unit impulse at degrees of freedom 1 and 2 (horizontal and vertical directions at tip
of truss). A better dynamic response is shown for the controller designed by the ISDC
approach. The input forces of the six actuators are illustrated in Figures 2.17 to 2.22. The
maximum amplitudes of the first four actuators are almost the same, while those of the fifth and
the sixth actuators of the ISDC controller are about 15% to 25% higher than those of LQR
controller designed with complete system mode!.

-t
The performance index, I(xTQx +uTRu)dt, is presented in Fig.2.23 for both the systems.
0

The performance index of the system with ISDC controller is higher than that of the system
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with LQR controller by 17.7% for the case of impulse input. The second case of simulation
involves applying the initial displacements to the various degrees of freedom, which are
obtained by applying a static force at node 1 in vertical direction such that the displacement at
node 1 is unity. The dynamic responses of degrees of freedom 1,2,5,6,17, and 18 are shown in
Figures 2.24 t0 2.29. The dynamic response of the system with ISDC controller is a little better
than that of the system with LQR controller. Figures 2.30 to 2.35 show the input time history
of both systems. They show that the ISDC approach induces smaller input forces for the first
three actuators but higher input forces for the last three actuators. In Fig. 2.36, the performance
index of the system with ISDC controiler is about 20.1% higher than that of the system with
LQR controller.

For the six-bay truss, the actuators are rearranged at d.o.f.’s 1,2,5,6,21, and 22 and three
substructures are arranged as shown in Fig. 2.9. Here the second substructure contains no
actuator, and the design procedure of sec. 2.4 is then used to solve the control design problem.

The resulting closed-loop eigenvalues are compared with those of the optimal design in Figure
2.37.

The ISDC procedures with direct and indirect condensation approaches are compared in
Figure 2.38 for the six-bay truss described in Fig. 2.9. The closed-loop system eigenvalues
obtained using the indirect condensation approach are closer to those of the optimal design than
those using the direct condensation approach. This shows that the indirect condensation
approach is better than the direct condensation approach.

2.7 Concluding Remarks

The interacting substructure decentralized control design procedure has been developed for
large flexible structural control. This method is based on the physical coordinates instead of
modal coordinates. Thus, the natural frequency and modal matrix information is not required
and no model data error is introduced into the system. By using the concept of interacting
substructures, the size of the mathematical model can be reduced without using model
reduction techniques and hence the “spillover problem” can be avoided. During the nodal
condensation process, two approaches, direct and indirect condensation precesses, are
considered. Although no modal data is involved in the direct condensation approach, it can
only be applied to serial structures. While the indirect condensation involves substructure
modal data, it can be applied to any general structure. As can be expected, the design of the
ISDC using indirect condensation approach will be closer to the optimal design by increasing
the number of modes used in finding the transformation matrix, which can be done by
increasing the number of boundary degrees of freedom when the substructures are defined.
Generally speaking, the computational efficiency of the ISDC approach will be more
significant when it is applied to very large flexible structures.
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Figure 2.5 Displacement of 2-bay Truss at d.o.f. 1 (impulse at tip)
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Figure 2.10 Eigenvalues of 6-bay Truss (first 12 pairs)
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CHAPTER 3

DUAL PASSIVE/ACTIVE CONTROL

3.1 Unified Passive Damper Design

Usually, discrete passive dampers are added to flexible structures at specific locations to
increase the stability of the whole structure as well as to improve the robustness of the closed-
loop system. In this section, an approach is developed for passive damper design. The basic
idea is to design, first a feedback controller for the original structure, and then a set of passive
dampers to approximate the behavior of the feedback controller. The purpose of this passive
damper design procedure is to use the well developed control design techniques for designing a
near-optimal set of dampers in the sense of minimizing the performance index of the closed-
loop system. The performance index is defined as the sum of the vibration energy and the input
energy of actuators. The input energy of the actuators can be considered to be proportional to
the weight of the damping devices in the unified passive damper design.

For flexible structures, the equations of motion can be written in the form of Eqs.(2.1) and
(2.2). If the optimal linear quadratic regulator is used for the controller design, the control gain
can be obtained by solving the algebraic Riccati equation (2.6) and Eq.(2.5). Partitioning the
Riccati solution matrix P into four nxn submatrices (where n denotes the dimension of the
displacement vector v) as

Py P2
P= 3.1
[PIZ Pzz]

and substituting Eqs.(2.5) and (3.1) into Eq.(2.2) leads to the closed-loop system
X =Agx (3.2)

where

0 I

Ad= | _MrIpR-IDTM-TP MK ~M-!DR-'DTM-TP,,-M~'C 33)

Equation (3.2) can be rewritten as
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Mx + (C+AO)X + (K+AK)x =0 (3.9
where
AK =DR"!'D"™MTP, (3.5)

and
AC=DR!D"MTp,, (3.6)

The changes in C and K, namely, AC and AK, brought by the active controller can also be
partly achieved using a set of discrete dampers and springs. When m dampers (c;) and p spring
(k;) at several specified locations are used, the damping and stiffness matrices of the system are
modified by AC and AK respectively. The values of c; and k; can be determined by using the
least squares method such that the differences between AC (AK) and AC (AK) are minimized.
The least squares problem is formulated and solved as follows:

1. 'Write AC, AC, AK and AK in vector form C1, C1, K1 and K1 (e.g. CI, = AC;; and 1=(i-

1)*n+j ).
2. Write CI and K1 into a constant matrix multiplying an unknown vector such that

C1
—_— C2
Cil=A ) (3.7
-cmq
k, ]
—_ k,
K1=B ) (3.8)
ke |
and A, B are n?*m and n? *p coefficient matrices.
3.
Min [|ICT - C1|} (3.9)
TR
Min |[K1 - K1} (3.10)
kl s kp
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Since AC and AC are symmetric matrices, we can reduce the order of the problem in Eq.
(3.9)to m*n(n+1)/2, as

T
i uA’{c,cz...cm} =CY') 3.11)

c

T
where C1’ is the upper triangular matrix of AC in vector form, and A'{Clcz e Cm} is

the upper triangular matrix of AC in vector form. Since AK is a nonsymmetric matrix,
Eq.(3.10) cannot be reduced.
4. The Moore-Penrose inverse [14] is used to solve Eqs.(3.11) and (3.10) as

T
{CICZ---cm} =A"Cl (3.12)
T
{klkz...kp} =B*K1 (3.13)
where
A*=vzryT (3.149)

=t =diaglo7' 03! ---67'0---0]

A’=UzVT (by singular value decomposition)

B* =V, I{uT (3.15)

B =U;Z, V] (by singular value decomposition)

5. In this step, some adjustments have to be made. Usnally, k; and c; obtained in step (4)
are not all positive semidefinite (i.e., not all realizable); the negative elements should be
set equal to zero. If the values of springs are very very siall compared to the structural
stiffness, the designer can neglect them without much effect.
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To get a more general approximation, the constrainted optimization techniques can be
applied in the presence of constraints on design variables (e.g., size and weight constraints on
dampers and stiffnesses). For unconstrained approximation, the least square approach gives
the same result as that of a nonlinear optimization approach but the former will save much
computational time.

3.2 Dual Passive/Active Control

As we know, passive control is unconditionally stable for a stable open loop system and is
robust and reliable. Unfortunately, passive control fails to meet stringent performance
requirements which are required in most flexible space structures. On the other hand, active
control meets the stringent performance requirements if there are no energy and power
limitations and if a perfect system model is available. For practical structures, the model
reduction procedures are to be used; also there will be limitations on energy and power. In
extreme cases, the spillover problem caused by mode truncation will induce an unstable
closed-loop system. Thus, dual passive/active control approach can be used as a compromise
approach to meet the performance requirements as well as to make it more tolerant to
uncertainties in system design and disturbances. Also, the dual passive/active control design
leads to a more reliable control with a smaller production cost.

Gehling, 1986 shows that if passive damping is designed into the system, the amount of
damping achievable in a flexible space structure will reduce the requirements of active control
design. Savings can be realized in terms of the number of control system components and
energy expenditure for vibration control.

The procedure of passive damper design (sec. 3.1) coupled with the interacting substructure
decentralized control (Chap. 2) can be described briefly as follows. The first step in dual
passive/active control design is to use a well developed control technique to design an active
controller and use an approximation process to design a set of preassigned dampers as
described in Sec. 3.1 The second step is to modify the original structure with the additional
passive dampers and rewrite the system equations of motion. The sensor/actuator location
should be preassigned and then the state equation can be written. Finally the interacting
substructure decentralized control approach is applied to design the active control system.

3.3 Examples

Four examples are considered to illustrate the procedures outlined in this chapter. The first
one deals with the passive damper design using the unified passive damping design (UPD)
method on a two-bay truss. The second and third examples deal with the active control using
the ISDC method on two-bay and six-bay trusscs, respectively. The fourth example deals with
the multilevel passive/active control using the UPD and the ISDC methods on a two-bay truss.
For original structures, no damping is assumed and hence the open-loop eigenvalues of the
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structures are all located on the imaginary axis.
3.3.1 Passive Damper Design

A wwo-bay truss (Fig. 2.3), with prespecified arrangement of damping devices, is used to
illustrate the passive damper design methodology. Two types of damping arrangements, as
shown in Fig. 3.1, are considered in this example. The weighting matrices Q and R are chosen
as 10°*I and I ( is the identity matrix), respectively. Following the UPD procedure, the
damping coefficients have been determined as indicated in Table 3.1. The eigenvalue pairs of
the modified structures (the original structure with passive dampers) are compared with those
of the closed-loop controlled structure with active controller designed by the LQR procedure.
The first configuration gives an acceptable approximation to the closed-loop system with active
control except for the first three eigenvalue pairs (see Fig. 3.2). The first four eigenvalue pairs
of the second configuration are not very close to those of the closed-loop system with active
control (Fig. 3.2). This shows that the passive damper design procedure, described in this
chapter, can improve the system dynamic response very well in higher frequency modes.
However, it is impossible to obtain a passive damper design which gives the exact dynamic
response of the actively controlled structure. Hence, the combined passive and active control
system is necessary for practical structures with stringent dynamic requirements. The damping
coefficients vary with the weighting matrices chosen. The relationship, for the second
configuration (Fig. 3.1(b)) of damping arrangement, is presented in Table 3.2. The input
weighting matrix R is the identity matrix and the output weighting matrix Q is the identity
matrix multiplied by a scalar coefficient q. Tables 3.2 and 3.3 show that the change in damping
coefficients, as well as the change in the real part of cigenvalues of the modified structures, is
approximately proportional to the square root of the change in the scalar coefficient q.

3.3.2 Dual Passive/Active Control

The unified passive damping design procedure (Fig. 3.2) gives a good approximation to the
LQR actively controlled structure except for the first few modes and the interacting
substructure decentralized control (ISDC) method gives a better compensation for the first few

odes. Hence, a dual passive/active control design for LFS with the first-level control
designed by the unified passive damping approach, and the second-level control designed by
uFing ISDC, is expected to be more promising in obtaining a better performance. The two-bay
truss shown in Fig. 2.3 is considered to demonstrate the multilevel passive/active control
design procedure. The results of the two-bay truss configuration shown in Fig. 3.1(b), obtained
with only the passive damper design and weighting matrix Q=10*1, are used as the first level
passive control design in this example. A second level active control design is obtained by
using the ISDC procedure with weighting matrices Q=10°*I and R=I based on the passively
damped structure. Two substructures are used and four sensors and actuators are colocated at
degrees of freedom 1,2,5, and 6. The eigenvalue pairs of (i) the uncontrolled structure, (ii) the
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controlled structure with the controller designed with the complete model, (iii) the conwrolled
structure with controller designed by the ISDC method, and (iv) the structure designed with the
dual passive/active control , are shown in Fig. 3.3.

Most of the eigenvalues of controlled structure with UPD/ISDC controller move to the left
compared to those of the closed-loop system with ISDC controller. This indicates that the
stability margin of the closed-loop system, for the higher frequency modes, is increased by
using the dual passive/active control strategy. Although the change is small, the reliability and
stability robustness of the system will be significantly improved. The relationship between the
change in the eigenvalues of the dual UPD/ISDC controlled structure and that in the output
weighting matrix is also illustrated in Table 3.4.

The simulation results of the two-bay truss with unit impulse at tip (in both directions at
node 1) for different controllers are presented in Figs. 3.4 to 3.11. The displacement outputs
(Figs. 3.4 to 3.7) from the sensors appear to be identical for systems with ISDC controller and
dual UPD/ISDC controller. Figures 3.8 to 3.11 show that the input forces of ISDC controller
are larger than those of dual UPD/ISDC controller. The time variation of the performance
index is presented in Fig. 3.12. The performance index of the dual UPD/ISDC controller is
reduced by 10.7% compared to that of LQR controller and by 28.14% compared to that of
ISDC controller. This indicates that a great improvement in performance has been achieved by
the dual passive/active control design.

3.4 Concluding Remarks

A unified passive damper design procedure is developed based on the well developed
control design techniques and approximation techniques. The design variables are the
weighting matrices R and Q for LQR design or control gain for other control design
techniques. Appropriate location selection of damping devices is very important for the unified
passive damper design procedure. For the case when the weighting matrices, R and Q, are
assumed to be the identity matrix and the identity matrix multiplied by a scalar q, the change in
the damping coefficients, for a preassigned set of damping devices, varies as the square root of
the change in the scalar coefficient q. The design of constrained viscoelastic layer treatment, a
kind of continuous damper, can also be achieved by this method using optimization techniques.
The dual passive/active control strategy, using unified passive damper design and interacting
substructure decentralized control approaches, is applied for a two-bay truss. The resuit shows
that the passive control significantly improves the reliability of the closed-loop system and
reduces the active control energy consumption under the same performance requirements.
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Table 3.1 Damping Coefficients of the UPD for Two-Bay Truss (Q=10%*1)

___ Damping Coeff. (Ib%s/in

Configuration I I
¢y 31.6271 15.8118
¢y 21.0915 | 21.0915
c3 31.6271 | 15.8116
Cq 31.6267 | 15.8151
cs 21.0871 | 10.5457
ca_ 31.6267 | 15.8151

Table 3.2 Damping Coefficients of the UPD for Two-Bay Truss in

Configuration II
Damping Coefl. for Configuration II
Matrix Q | 10°1 | 10%*1 [ 10%*l 10**1 10%*1

¢ 1.5812 | 5.0001 | 15.8116 | 50.0006 | 158.1160
Cy 2.1092 | 6.6697 | 21.0915 | 66.8972 | 210.9151
c3 1.5812 | 5.0001 15.8116 | 50.0008 158.1160
Cq 1.5815 | 5.0012 | 15.8151 | 50.0117 | 158.1510
cg 1.0546 | 3.3348 | 10.5457 | 33.3485 | 105.4572
Ca 1.5815 | 5.0012 | 15.8151 | 50.0117 | 158.1510
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Table 3.3 Eigenvalues of Modifled Two-Bay Truss with Damping Coeficients
of Table 3.2

-1.48+4124.73i
-1.29+123.15i
-1.02+104.11i

-1.43+124.06i
-1.10+123.79i
-1.06+104.17i

-1.35+124.29i
-1.38+123.57i
-1.13+104.17i

-1.61+124.52i
-1.88+123.35i
-1.31+104.15i

Eigenvalues of Modified Two-Bay Truss
Matrix Q 10%*1 104*1 10%*1
-0.28+143.971 | -0.88+143.97i | -2.78+143.93i
-0.28+124.84i | -0.88+124.84i | -2.78+124.82i
-0.23+123.06i | -0.72+123.081 | -2.26+123.04i
Eigenvalue | -0.10+104.11i | -0.32+104.11i | -1.02+104.11i
pairs -0.03+87.27% -0.09+-87.27i -0.29+-87.271
-0.01+486.101 -0.03+48.10i -0.10+486.10i
-0.02+42.69i -0.084+42.69i -0.25+42.69i1
-0.002+14.10% -0.01+14.101 -0.024-14.101
Table 3.4 Eigenvalues of Closed-Loop Two-Bay Truss with Different
Controllers
Eigenvalue Pairs
LQR ISDC UPD/ISDC UPD/ISDC UPD/ISDC
(Q=10%*1) | (Q@=10**]) (Q=10%*1)
-1.55+143.96i | -1.73+144.01i | -1.79+143.99i | -2.08+143.97i | -3.47+143.91i

-3.10+124.71i
-2.87+123.14i
-1.94+104.13i

-1.39+ 87.26i | -1.02+ 87.28i | -1.05+ 87.28i | -1.12+ 87.281 | -1.31+ 87.28i

-1.25+ 48.07i | -2.19+ 46.24i | -2.14+ 46.19i | -2.06+ 46.191 | -1.95+ 46.15i

-0.88+ 42.68i | -1.23+ 42.871 | -1.27+ 42.67i | -1.36+ 42.69i | -1.50+ 42.89i

-0.99+ 14.08i | -1.33+ 14.121 | -1.34+ 14.11i | -1.35+ 14.10i | -1.37+ 14.09i
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(b)

Figure 3.1 Damping Arrangement for Two-Bay Truss (8) Configuration I, (b)
Configuration IT
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Figure 3.3 Eigenvalues of 2-bay Truss
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CHAPTER 4

ROBUST INTEGRATED STRUCTURAL AND CONTROL DESIGN

4.1 Background

There has been a dramatic increase in the past decade in using active control systems to
improve structural performance. The major challenge in the ficld of active control of structures
is in the design of control systems for very large space structures. These structures are by
nature distributed parameter systems with multiple inputs (controls) and a continuum of
outputs (displacements). The finite element method is commonly used for the description of
these structures. This is a source of parameter errors and truncated (or reduced order) models in
the system. In addition, the structural properties of large space structures cannot be tested
before they are put into orbit and hence sizeable uncertainties exist in modal parameters.

A great deal of research is currently in progress on developing methods for the
simultaneous (integrated) design of the structure and the control system. The weight of the
structure was minimized with constraints on the distribution of the eigenvalues and/or damping
ratio of the closed-loop system by Khot et al. (1985). Miller and Shim (1986) considered the
simultaneous minimization, in structural and control variables, of the sum of structural weight
and the infinite horizon linear regulator quadratic control cost. The structure/control system
optimization problem was formulated by Khot, et. al (1986) with constraints on the closed-loop
eigenvalue distribution and the minimum Frobenious norm of the control gains. In all the
above works, the consideration of robustness of the control system has been ignored.

The parameter variations introduced by the analysis model, uncertain material properties or
optimization may adversely influence the stability and performance characteristics of the
control system. The robustness is an extremely important feature of a feedback control design.
A robust control design is one which satisfactorily meets the system specifications even in the
presence of parameter uncertainties and other modeling errors. Since the system specifications
could be in terms of stability and/or performance, two types of robustness, namely, stability
robustness and performance robustness, are to be considered in the design stage.

The current published literature on control system robustness addresses either the stability
robustness aspect or the performance robustness aspect. Most of the work on the stability
robustness (in the controls area) was done in the frequency domain using singular value
decomposition while much of the useful research on performance robustness was carried out in
time domain using sensitivity approaches. Design studies that treated the stability robustness
aspect in time domain and studies which combined both stability robustness and performance
robustness in the design process have been scarce. The recent developments in the area of
robust multivariable control theory have been summarized by Ridgely and Banda (1986). The
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stability robustness of linear systems was analyzed in the time domain in Yedavalli et al.(1985)
wherein a bound on the perturbation of an asymptotically stable linear system was obtained to
maintain stability using Lyapunov matrix equation solution. In Kosut et al.(1983), singular
value robustness measures were used to compare the performance and stability robustness
properties of different control design techniques in the presence of residual modal interaction
for a flexible spacecraft system. The importance of robustness considerations in the design of
flexible space structures was discussed by Hoehne (1985). Gordon and Collins (1985)
presented a direct design method for solving the problem of robustness to cross-coupling
perturbations by treating the feedback gains as design variables. Their method makes use of
nonlinear programming techniques along with a time domain pole placement procedure. A
technique for the improvement of stability robustness by shaping the singular value spectrum
using constrained optimization methods was described in Mukhopadhyay (1985).

4.2 Robustness Analysis in Controlied Structures

Stability robustness and performance robustness are two very important properties which
give the ability of the closed-loop system to maintain its asymptotic stability and performance
requirements under perturbations or errors in the system model or controller parameters.
Hence, the measures of the stability and performance robustness are important. The stability
robustness index, a measure of closed-loop system stability under uncertainty or modeling
errors, is defined as the summation of weighted variations of system eigenvalues and can be
written as

2n —
Bsr = Z Wi I)“l—x‘l i 4.1)

i=1

where By, is the stability robustness index, and A; and A; are the closed-loop eigenvalues of
nominal system and perturbed system, respectively. The weighting coefficient w;, denoting the
importance of eigenvalue pair i, is determined by the horizontal distance of eigenvalue to
imaginary axis in complex plane:
1
| = m———— 42
Wi S*real(A;) “42)
in which
s=5 1 @3)
B & real(d;) '

In addition to stability robustness, it is desirable to retain the performance unchanged when the
design variables are changed. Since the performance cannot remain the same , a performance
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robustness index is defined to present the performance robustness. From optimal linear
quadratic regulator, if P is the steady-state solution of matrix Riccati equation, the performance
index is given as a function of initial state vector as

J=x{Pxg 4.4

The performance index for perturbed system with the same controller can be written as

T=x§Pxo (4.5)
where P satisfies the Lyapunov equation
T ——
AgP+PA  +GTRG+Q=0 4.6

in which, A is perturbed closed-loop system matrix:
A=A +BG @.7

R and Q are positive definite input and positive semi-definite output matrices and G is the gain
matrix for controller:

G=~R1BTp 4.8)

and P satisfies the relation

ATP+PA-PBR'BTP+Q=0 ‘ 4.9)

The performance robustness index is defined as the error ratio of steady-state performance
index:

x§ @ - P)xo
= (4.10)
xa'Pxo

1-7
J

BP'=

It has been pointed out by Kleinman and Athans (1968) that the optimal solution of Eq.(4.4) in
general depends on the initial state x,. This result is not very useful since the initial state is not
always known. The effect of xg is averaged out by assuming that xg is a uniformly distributed
random vector whose covariance is given by the identity matrix. The trace of P is proportional
to the expected value of J. Hence Eq.(4.10) can be written as




Tr(P) - Tr(P)

4.11
) (4.11)

Box =

For both nominal and perturbed systems, good dynamic response can be achieved if the real

part of every eigenvalue is restricted to be smaller than a specified value as Re(A) < —a, with

a>0. The LQ regulator can be modified (Jacobson et al., 1980) as follows with the requirement
of (A,B) being controllable and (A,C) being observable.

x = (A + al )x + Bu= (A+al-BG)x 4.12)
u=-R!'BTK,x =-Gx 4.13)

with K, satisfying the equation
(A+aDTK, + K, (A+al) - K,BR!BTK, + CTQC=0 4.14)

The characteristic equation of Eq.(4.12) is given by
det [(A + al - BG) — All=det [A —~BG - AT} =0 (4.15)

with A =A—a. Since A is assumed to be stable, then Re(A ) <0, and hence Re(A) <-a. Thus,
the system with controller, Eq.(4.13), provides a guaranteed stability margin.

4.3 Multiobjective Design Problem

The stability robustness, the performance robustness and the total structural weight are
considered as the objective functions in this work. The cross sectional areas of the members
are treated as the design variables. The first objective function, the stability robustness index
(Bsr), describes the relative stability of the system when the design variables change by a
specified amount. It is assumed that the controller gains are such that the condition for the
stability of the system is satisfied and thus the closed-loop system matrix of the perturbed
system is still stable. According to this definition, B=0 corresponds to a highly robust system
from the stability point of view. However, B,, will not attain the value zero because of the
presence of perturbations in the design variables. The second objective function, the
performance robustness index of the system (Bp,), is defined by Eq.(4.11). Here also, ﬁp,=0
corresponds to a highly robust system from the performance point of view. The value B,=0
will not be attained in practice because of the presence of perturbations in the design variables.
The third design objective function, the total structural weight, is given by

N
f3(x) = TpikiA; 4.16)
i=1

with p;, I; and A; denoting the density, length and cross-sectional area of the i member
respectively, and N representing the number of members in the truss structure. The following
constraints are used during the optimization procedure:
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1. Upper and lower bounds on the design variables.

2. Stability requirement, i.e., the requirement of the real parts of the eigenvalues of the
closed-loop system to be negative.

3. Lower and/or upper bounds on the natural frequencies of vibration of the structure.

In some cases, the closed-loop damping ratios of the system may have to be constrained;
however, these are not considered in this work.

4.4 Multiobjective Optimization Techniques

The three objective optimization problem formulated is solved using the utility function,
the lexicographic and the goal programming methods. The utility function method involves the
solution of the following problem (Rao, 1984A):

ok
Min U(x) = ¥, w;f;(x) 4.17)
i=1
subject to

g(x)<0,j=1,2,...,m

k
where w; is the weight of the i™ objective function f; and Y w;=1. Usually, the scales and units
=1
of different objective functions are different. Hence a suitable normalization process has to be
used in constructing the objective functions of Eq.(4.17). A convenient form is to define a new
objective function F; as

f;(x) — £ (x{)
f; (x)

where x; is the optimal solution for individual objective function f;, and f (x{) is optimal
function value of objective function i. Redefine the objective function of Eq.(4.17) as

Fi(x)= 4.18)

Min U(x) = iwiFi(x) 4.19
- =l

In the lexicographic method, the objectives are ranked in order of importance by the
designer. The preferred solution obtained by this method is one which minimizes the objectives
starting with the most important one and proceeding according to the order of importance of
the objectives. Let the subscripts of the objectives indicate not only the objective function
number, but also the priorities of the objectives. Thus F; (x) and Fy (x) denote the most and the

least important objective functions, respectively. Then the first problem is formulated as

Min F, (x) (4.20)

subject to
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g(x)<0, =12,...m
and its solution x} and F] = F;(x]) are obtained. Then the sccond problem is formulated as
Min F>(x) @.21)
subject to

gi(x)<0, j=1,2,...,m ,and

gmr1 (X) =F (x) - F1(x]) < ¢

where g, is a small value compared to F; (x]). This procedure is repeated until all k objectives
have been considered. The i problem is given by

Min F;(x) (4.22)
subject to

gj(x)<0, j=1,2,..,m ,and

Zman(X) = Fu(x) = Fo(xp) S &, n=1,2,...,i-1

The solution obtained at the end, i.e. Xy is taken as the desired solution x" of the multiobjective
optimization problem.

The goal programming method was originally proposed by Charnes and Cooper (1977) for
linear optimization problems. The method requires goals to be set for each objective that the
designer wishes to obtain. A preferred solution is then defined as the one which minimizes the
deviations from the set goals. Thus a simple goal programming problem can be defined as

k
Min F(x)={ T (F(x) P 1P, p21 (4.23)

=1
subject to

g(x) <0, j=1,2,..m

Fx)20, j=1,2,...k
where  Fj(x) = Fj(x) - F;(x}).

4.5 Computational Procedure
4.5.1 Analysis

The following analysis procedure is used to study the effects of variations in the parameters
of the structure on the robustness of the system:
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1. Start with an initial reference design of the structure and find the corresponding plant
matrix A, input matrix B and the output matrix C.

2. Use the LQ regulator design technique to find the optimal control gain G by solving the
algebraic Riccati equation.

3. Change the design parameters by known percentage values and find the corresponding A,
B, and C matrices.

4. Find the stability robustness index By (Eq.(4.1)) and the performance robustness index
Bor (Eq.(4.11)).

5. Repeat steps (3) and (4) for different parameter changes. (e.g., nominal design variables,
damping ratio, density etc.)

6. Plot a graph between By or B, and the change in the parameters.

4.5.2 Design

The purpose of design is to optimize the actively controlled structure by using suitable
multiobjective optimization techniques. The procedure is given as follows:

1. From the requirements of stress and deformation, obtain the preliminary design (to be
used as the nominal design) of the structure.

2. Construct the plant matrix, input matrix, and output matrix.

3. Formulate the multiobjective constrained optimization problem.

4. Minimize the individual objective functions and find the respective minima around the
nominal design.

5. Use a suitable multiobjective optimization approach to find a compromise solution.

4.6 Examples
4.6.1 Two-Bar Truss

The two-bar truss shown in Fig. 4.1 is selected for its simplicity. A nonstructural mass of 1
unit is attached at node 3. The actuators and the sensors are colocated at node 3 acting in x and
y directions. The design variables (cross-sectional areas of the two bars) are restricted to lie
between 0.01 and 1.0. The structural damping ratio is considered as 0.01, Young’s modulus is
assumed to be 107, and density is taken to be 4.6. In the performance index, the output
weighting matrix Q is assumed to be 1000.*], and the input weighting matrix R is taken to be I,
where I is the identity matrix. The natural frequencies of the closed-loop controlled structure
are constrained to lic between 20 rad/sec and 40 rad/sec. For a stable open loop system, the
corresponding feedback closed-loop system must be stable under the optimum control law. But
the stability is not guaranteed if there exist disturbances or uncertainties in system parameters.
Hence, additional constraints are added on the perturbed closed-loop system, namely, that all
the eigenvalues of the perturbed closed-loop system are restricted to have negative real parts.
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Analysis:

Figure 4.2 shows the relationship between the stability robustness index and the design
variables, which is a smooth concave function. Figure 4.3 shows the variation of the
performance robustness index with the two design variables; it is a non-concave function
having several local minima in the design space. Figure 4.4 shows the variations of stability
robustness index and performance robustness index with changes in the structural damping
ratio of the two-bar truss. The stability robustness index drops sharply at a value of the
damping ratio of approximately 4%. The performance robustness index can be observed to
attain a minimum value at a damping ratio of approximately 1%. Figure 4.5 shows that the
system performance index (J) decreases as the damping ratio increases. The effect of the
variations in Young’s modulus of the material on the robustness indices is shown in Figure 4.6.
The stability robustness index monotonicaily increases as the Young’s Modulus increasing.
The performance robustness index reduces to a minimum value at Young's modulus (E)=
20x10° and then increases for larger values of E. Figure 4.7 indicates that J increases to a
maximum value at Young’s modulus E=20x10° then decreases for larger values of E.

The relationship of B, and By, with the mass density of the material is shown in Fig. 4.8.
The stability robustness index decreases with an increase in the density of the material. The
performance robustness index reduces to a minimum at p=1.5 and then increases for higher
values of p. In Fig. 4.9, the performance index attains a maximum value at p=1.5 and then
decrease monotonically as the material density increases. Figure 4.10 shows the variations of
the stability robustness index and the performance robustness index with a change in the
coefficient of the output weighting matrix. An increase in the coefficient of the output
weighting matrix implies that the output performance is more important than the control
energy. The minimum of By and the maximum of B, occur at coefficient=400, and a larger
coefficient increases the system stability robustness index but reduces the system performance
robustness index when the coefficient is greater than 400. Figure 4.11 shows that the
performance index reaches the minimum when the coefficient of output weighting matrix is
equal to 400 and monotonically increases when the coefficient is greater than 400.

Design:

The results of minimization of the individual objective functions are shown in Table 4.1.
The results given by different multiobjective optimization methods are shown in Table 4.2. The
first two columns in Table 4.2 correspond to formulations #1 and #2 of the utlity function
method. In formulation #1, w; are set equal to a fixed value of 1/3 in Eq.(2.17) while w; are
considered as design variables in formulation #2. The last row of Table 4.2 gives the values of
the global evaluation function, F;, which can be used as an index to compare the results of
different multiobjective optimization methods. The global evaluation function is defined as
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3 »
Fg(x) = T Fi(x') (4.24)
i=l
where
_ (f1(x) - 0.009502)
Fi0=—3010535
oo (F20) ~ 0.0015899)
2= 603 nB1 .
£3(x) — 23.
and Fy(0) = (f3(x) — 23.598)

43.682

4.6.2 Two-Bay Truss

The finite element model of the second example (two-bay truss) is shown in Fig. 4.12. For
this example, nonstructural masses of magnitude 1.29 are attached at nodes 1 to 4. Each node
has two degrees of freedom. The actuators and sensors are colocated at nodes 1 to 4 and are
assumed to act along the y-direction only. The design variables (cross- sectional areas) are
restricted to lie between 0.001 and 0.5. The natural frequencies of the closed-loop system are
constrained to be larger than 31.62 rad/sec (i.e., ©221000).

Analysis:

This example has 10 design variables. Since the display of functional relations in 10-
dimensional design space is not possible, the variation of the robustness of the system is found
by uniformly varying the value of all the 10 design variables. The results are shown in Fig.
4.13. This figure shows the stability robustness index versus the value of the design variables
when the permissible change in the design vector is assumed to be -5%. By and By decrease
slowly with an increase in the value of the design variables. The B, shows a smooth concave
function, while the B, shows a nonsmooth curve. Hence local minima are expected in the
optimization process for the performance robustness index. In Fig. 4.14, the performance
index decreases monotonically with increase in the value of the design vector. This implies that
a stronger structure will induce a smaller displacement and needs lesser control energy to
obtain good performance. -

Design:

The nominal values of the design variables are x; = 0.1, i=1 to 10. Table 4.3 gives the
results obtained by optimizing the individual objective functions starting from the nominal
design. The results of different multiobjective optimization methods, namely, the utility
function method, the lexicographic method and the goal programming method are compared in
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Table 4.4. The last row of Table 4.4 shows the global evaluation function, Fy, defined as

3
F(x) = YF(x") (4.25)
i=1
where
_ (1(x) — 0.048694)
Fi00=—03500668
(£, (x) — 0.008454)
P =—F501s88
£4(x) — 0.22
and  Fy(x)= (Bx) )

0.02681

4.7 Concluding Remarks

The stability robustness index and the performance robustness index defined in this chapter
are highly nonlinear with respect to design variables. The non-concave property of robustness
indices with changes in design variables leads to difficulties in optimization. As such one can
expect to find only a local optimum in the neighborhood of the starting design during
optimization. In general, the local optima are acceptable since the starting design is usually
taken as the nominal design which is expected to be robust. Techniques, such as genetic
algorithms and simulated annealing, might be alternatives to avoid the local minima to obtain
the global optimal design. The relationships between the stability/performance robustness
index and the various system parameters have been determined numerically for the two-bar
truss. These results are expected to be useful in choosing suitable material for a given structure
with a specified geometry or weighting coefficients in the performance index for controller
design.

A major advantage of using nonlinear programming to find the robust control/structural
design is that it can be used with large permissible changes in the design variables and/or
different constraint specifications. Three multiobjective optimization methods have been used
to find the optimal designs of the illustrative examples. For the two-bar truss, the utility
function method with variable coefficients gave the smallest value of the global evaluation
function. For the two-bay truss, the goal programming method with p=2 yielded the smallest
value for the global evaluation function and the utility function method with variable
coefficients gave the second smallest value. As observed in the investigation, no particular
method gives the best solution for all the problems. Hence, several methods are to be used to
solve the problem and find the best trade-off between the multiple objectives.

97




Table 4.1

Single Objective Optimization of Two-Bar Truss.

Permissible design variable change = -5%.

§=0.0l, c=103‘ X(0)={

0.1
0.1

Minimization of
Objective Bs: Ber Weight, W
G 1.0 0. 0.
i=1,3 0. 1.0 0.
0. 0. 1.0
& 0.14626 0.15247 0.051301
0.14626 0.13797 0.051301
f,(x") 0.009502 | 0.009557 0.020037
f(x") 0.001618 | 0.0015899 | 0.004813
f3(x") 67.28 | 66.801 23.598
3
=Y Cf; | 0009502 | 0.0015899 | 23.598
i=1




Table 4.2
Muldobjective Optimization of Two-Bar Truss

Permissible design variable change = -5%

E=001, {=10°, x(0)= 0.1

0.1
Utility Function Method Lexicographic Method Goal Programming Method
Const. Coef. | Variable Coef. Optimization Order p=1 p=2
fy.f2.6 fy.f,,.f5 £.1,.f5
Optimal | X, =0.1309 0.1463 0.15389 0.056296 | 0.14466 0.051294 0.051807
Design
Variables | X, =0.12709 0.1299 0.13483 0.056303 | 0.1440 0.051309 0.051807
x.
f,(X*) 0.010506 0.009950 0.009603 | 0.018932 | 0.009604 0.020037 0.019919
f2(X%) 0.001867 0.001792 0.001669 | 0.004399 { 0.001664 0.004809 0.004770
f3(X") 59.337 63.549 66.404 25.898 66.391 23.599 23.831
3
Y F(X") 0.999438 0977291 1.014075 1.819317 1.010398 1.998782 1.980792
=
99




Table 4.3

Single Objective Optimization of Two-Bay Truss

Permissible design variable change = -5%

£E=001, (=10, X(0)=0.1 i=lt010
Minimization of

Objective Bsr Boe Weight, W
0.13816 | 0.13765 0.11274
0.09648 | 0.09339 0.00100
Optimal | 0.13782 | 0.13777 0.11315
Design | 0.27661 | 0.27637 0.33788
Variables | 0.10103 | 0.09899 0.00100
X! 0.27780 | 0.27725 0.33772
i=1t0 10 | 0.14537 | 0.14671 0.11810
0.14417 | 0.14507 0.11884
0.14808 | 0.14998 0.12110
0.15119 | 0.14920 0.12122

fi(X") | 0.048694 | 0.048701 0.049354

f,(X") | 0.010019 | 0.00981975 | 0.0084567
f3(X") | 0.252557 | 0.252307 0.22730
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Table 4.4

Multiobjective Optimization of Two-Bay Truss

Permissible design variable change = -5%

£=001, (=10>°, Xi0)=01 i=110
Utility Function Lexicographic Goal
Method Method Programming
Approach Method
Const. Variable Optimization Order p=2
Coef. Coef. . fl N f2,f3 f3 afl , f2
0.12247 | 0.13753 0.13697 0.14197 0.11389
0.01779 | 0.09207 0.09588 0.03602 0.00100
Optimal | 0.11406 | 0.13603 0.15071 0.16162 0.11142
Design 0.32120 | 0.27907 | 0.29918 | 0.36978 0.00100
Variables { 0.01000 | 0.09880 | 0.07856 | 0.00100 0.00100
X; 0.33931 027920 | 0.29422 | 0.34327 0.33617
i=1,10 0.10835 | 0.14554 | 0.15018 0.11642 0.11907
0.12838 | 0.14278 | 0.15061 0.12668 0.11901
0.13045 | 0.14917 | 0.10706 | 0.10488 0.12277
0.11834 | 0.14972 | 0.12839 | 0.11305 0.12420
f1(X") 0.048769 | 0.048742 | 0.048788 | 0.048664 0.049360
f,(X") 0.012034 | 0.00997 0.010307 | 0.011721 0.008479
f3(X*) | 022903 | 025196 | 0.24841 | 0.24438 0.22736
3
Y F(X*) | 2431212 | 1.946322 | 2.094988 | 2.694381 0.999241
i=1

101




(2.5,4.33)

(5- ,0-)
(0,0)

m= 1,0 6

E = 10*10

Density = 4.6
Nominal areas = 0.1

Figure 4.1 Two-Bar Truss
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Figure 4.3 Performance Robustness Index vs the Value of Design Variables
for Two-Bar Truss
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Figure 4.4  Stability and Performance Robustness Indices vs the Structural
Damping Ratio for Two-Bar Truss
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Figure 4.5 Performance Index vs the Structural Damping Ratio for Two-Bar
Truss
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Figure 4.8  Stability and Performance Indices vs the Young's Modulus for
Two-Bar Truss
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Figure 4.7 Performance Index vs the Young's Modulus for Two-Bar Truss
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Figure 4.9 Performance Index vs the Material Density for Two-Bar Truss
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Figure 4.10  Stability and Performance Robustness Indices vs the Output
Weighting Matrix Coefficient for Two-Bar Truss
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Figure 4.11  Performance Index vs the Output Weighting Matrix Coeflicient
for Two-Bar Truss
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Figure 4.12 Two-Bay Truss
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Figure 4.13  Stabilily and Performance Robustness Indices vs the Value of
Design Variables for Two-Bay Truss
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Figure 4.14 Performance Index vs the Value of Design Variables for Two-Bay
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CHAPTER §

ACTUATOR/SENSOR LOCATION SELECTION

The problem of selection of optimal locations of actuators/sensors in large flexible
structures has been under study for more than a decade. This problem was considered as an
integer programming problem and solved using heuristic techniques by Haftka and Adelman
(1985), and Skelton and DeLorenzo (1983). The complexity of Skelton and DeLorenzo’s
algorithm for m actuators on n available positions is given by

Cps = %(n+m)(n—m+l) 5.1)
The complexities of WOBI (worst-out-best-in) and ESPS (exhaustive-single- point-
substitution) algorithms, studied by Haftka and Adelman, can be expressed as
Cwopr = nxm (5.2)
and
Cgsps = m?x(n~m) (5.3)

All these three heuristic techniques yield only local optimal solutions with no guarantee about
the global optimum.

Recently, Salama et al. (1987) considered a similar problem in the framework of
combinatorial optimization and solved it using the simulated annealing heuristic algorithm.
The complexity of this formulation for m actuators on n available positions can be expressed as

n!

Coom = C(n,m) = Pryre—

Generally speaking, the simulated annealing algorithm will converge to the global optimum,
which corresponds to the lowest energy state, if an appropriate cooling temperature 6y, is
chosen. The selection of the temperature, Oy, is very critical in the simulated annealing
algorithm for which there is no systematic approach. Hence a trial and error procedure is
usually used to find the value of 6,.

In this work, three additional methods are investigated for solving the actuator and sensor
location problem.

(5.4)

5.1 Problem Formulation

The optimal actuator/sensor location selection problem, by nature, is a zero-one type
combinatorial optimization problem. The system equations (2.1) and (2.2) will be changed if
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the locations of actuators/sensors are changed. Hence, a more flexible modeling technique is
necessary during the optimization process. For consistency, the optimal linear quadratic
regulator is used for the control system design. The system equations and the control gain are
expressed in Egs (2.2) to (2.6). The input matrix B in system equation (2.2) can be expressed as

.0
B= [M" 5 (5.5)

in physical coordinates, and as
0
B= [ ¢D] (5.6)

in modal space.

The inverse of the input weighting matrix R is assumed to be a diagonal matrix containing
ones and zeros only with 1’s corresponding to locations with actuators and 0’s corresponding to
those without actuators. Hence, the system equations will remain unchanged during the
optimization process. Similarly, the output weighting matrix Q can be modified such that the
system equations for the estimation part are unchanged during the optimization process for
sensor location selection. For simplicity, the estimation part is neglected, and only the actuator
location selection problem is considered in this work.

The objective function (criterion) proposed to be used in the actuator/sensor location
selection problem is the energy dissipated by the active controller which can be written as

E. =+ [§ Dedat G.7)
2 0

where q is the velocity vector and D, is the induced damping matrix by the active controller.

By letting
Py P2
P= (5.8)
[le P2

B= 0 (5.9)
=5 .
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_ oo .
B.= |y p, (5.102)

or
D 0 0 5.10b
= |0 -BR'B P, (5.10)

the dissipation energy can be rewritten as

17 +.7ls |4
Ec==[4{qT q M9 dt (5.11)
e

Applying the transition matrix of states in Eq. (5.11) gives

o AT — do
E, = l{qo'r qu} geA'T"DceA‘tdt _ (5.12)
2 ' 90
which can be simplified as
1 . T|5)0
Ec = E{qo'r Qo }P . (5.13)
90
where
Aqg=A+BG=A-BR!BTP (5.14)
and P is the solution of the Lyapunov equation
Ayq"P+PA, =D, (5.15)

Equation (5.12) shows that the energy dissipation depends on the initial state which may not be
available for practical problems. A simple way to eliminate the dependence on the initial state
is to average it out by assuming the initial state {qg qo} to be a random variable uniformly
distributed on the surface of the 2n-dimensional unit sphere. Hence, an upper bound on the
dissipation energy can be expressed as
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E. = —tx(P) (5.16)

Let
R™! =diag [?, H T, ] 5.17)

be the inverse of the input weighting matrix, with T; denoting a binary variable indicating the
presence or absence of an actuator at position i. The zero-one optimization problem for the
actuator/sensor location selection problem can then be expressed as follows:

Maximize E, (5.18)

subject to

+n+ " +,=m

f.e(0,1), i=1,2,...n

5.2 Sequential-Best-Adding (SBA) Algorithm

Sequential-Best-Adding algorithm is a simple heuristic search procedure. As Skelton and
DeLorenzo’s WOBI and ESPS approaches, the sequential-best-adding method finds a local
optimum. However, the complexity is reduced very much, especially when a small number of
actuators (m) are used in a large feasible space (n).

The SBA algorithm can be described as follows:

1. Seti=1, j=0, and m= specified number of actuators to be used.

2. Evaluate the objective function by enumerating all possible combinations with i
actuators where j (j<i) of them have been fixed from previous calculations in the feasible
space.

3. Find the best combination, set i=i+1 and j=j+1.

4. If i>m then stop and list the best combination as the solution, otherwise go to step (2).

This approach can be depicted in the form of a tree structure as shown in Fig. 5.1 in which
only one branch has been explored. Hence, the complexity of the SBA algorithm can be
expressed as
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Cspa = -;-m(Zn-m+l) (5.19)

For a large system, the parallel processing techniques can be used to improve the efficiency of
the sequential-best-adding algorithm. :

5.3 Penalty Function Method

One possible way to solve nonlinear integer programming problems is use a penalty
function approach in which a penalty is included for non-integer solutions. This relaxation
technique can also be used for the actuator/sensor location selection problem. The relaxed
version of equation (5.18) gives

Maximizg E; +F, (5.20)

nn-h

subject to

T+ + - +?n=m

where F, is the penalty function because of the non-zero-one design parameters.
One type of penalty function for general 'imeger or discrete optimization problem (Rao,
1984) is
B

n Xi—Yi Xi~Yi
F,=yY{4 1 5.21)
P YE{ [Zi"')'i ] [ L~yi ] (

where x;, (i=1,..,n) are design parameters, Y and P (>1) are constants and y; and z; are the two
neighboring integer values of x;:

YiSx;i Sz (5.22)

For a zero-one programming problem, y; and z; are 0 and 1, respectively. Hence the penalty
function in Eq. (5.21) can be simplified as

n 8
Fp =Y Z{4xi(l—xi)} (5.23)
=l
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This penalty function is shown in Fig. 5.2 for different values of y and B. The maximum
magnitude of the penalty function is changed when the value of vy is changed, while its shape is
adjusted by the value of B. The choice of the value of Y strongly influences the convergence of
the objective function while that of B does not. A large value of y might cause to find only a
local optimum. Hence, the value of 7y is selected small enough at the beginning and increased
gradually. The value of P is a constant and greater than 1 in order to maintain the continuity of
the first derivative of the penalty function over boundary points.

Another form of penalty function is an exponential form:

F, =v__il [[H*“*] [1-c*"“""]]B (5.24)

This function gives a flatter shape penalty function on non-feasible solutions as shown in
Fig. 5.3. As with the penalty function of Eq.(5.23), the value of ¥ in Eq.(5.24) strongly affects
the convergence of the optimization process. The values of o and B influence the shape of the
penalty function. The value for a is suggested to be no greater than 10.

5.4 Genetic Algorithms
5.4.1 Background

Genetic algorithms (Davis, 1987 and Goldberg, 1989) are basicly guided random search
techniques derived from the natural genetics of populations. The decision variables (or design
parameters) are coded as a string of binary bits which correspond to the chromosomes in
natural genetics. The objective function value corresponding to the design vector plays the role
of fitness in natural genetics. The artificial recombination among the population of strings is
based on the fitness and the accumulated knowledge. In every new generation, a new set of
strings is created by using randomized parents selection and crossovers from the old set of
strings (or old generation). Although randomized, genetic algorithms are not simple random
search techniques. They efficiently explore the new combinations with the available knowledge
to find a new generation with better fitness or objective function value.

Genetic algorithms have been developed and studied by Holland (1973) and his students.
These algorithms are computationally simple but powerful in their search for improvement. A

growing number of applications can be found in science, engineering, business and social
sciences.

In the area of optimization, three basic approaches are commonly used for solving
nonlinear programming problems. The first category is calculus based methods which use the
local gradient information to decide the search direction and to determine the convergence of
optimum. These approaches find local optima instead of global ones for multimodal functions.

121




They are not useful for discrete or integer programming problems. The second category is
enumerative schemes which are commonly used in discrete or combinatorial optimization.
Although these methods are simple, they can only be applied to a problem with a small search
space. For practical problems, the search space usually is too large to enumerate the entire
space; in stead, heuristic algorithms and knowledge based search are used to increase the
search efficiency. The third category belongs to random search techniques which have attracted
much attention when the previous two types of approaches fail. Random search can be divided
into unguided and guided random searches. Unguided random searchs can be expected to do no
better than enumerative methods. The genetic algorithm, a guided random search, uses random
selection as a tool to guide a highly efficient search through a binary coded feasible design
space.

The genetic algorithm has been applied to different optimization problems by De Jong
(1980) and Goldberg and Samtani (1986). It doesn’t mean that genetic algorithm can find the
optimal solution for all kinds of problems efficiently. On the other hand, genetic algorithms
usually give reasonable near optimal solutions (a set of solutions). Hence, genetic algorithms
are very useful to solve a difficult and complex problem which can not effectively be solved by
conventional approaches. Moreover, since the whole process is manipulated on a set of points
(population), genetic algorithms are suitable for parallel processing to increase the efficiency.

5.4.2 Genetic Algorithms in Optimization

A simple genetic algori<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>